

Created: February 2023

Adapted from CO-OP North Manchester's curriculum

Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Topic(s)	Energy	Electricity	Particle Model	Energy Changes	Rates	Chemical Analysis
	Bonding	Organisation	Chemical Changes	Atomic Structure	Forces	Using Resources
		Quantitative	Infection and	Bioenergetics		
		Chemistry	Response			
Understanding:	The concept of	Electric charge is a	The particle model is	Energy changes are	Chemical reactions	Analysts have
Concepts /	energy emerged in	fundamental	widely used to	an important part of	can occur at vastly	developed a range of
Disciplinary	the 19th century. The	property of matter	predict the behaviour	chemical reactions.	different rates. Whilst	qualitative tests to
Knowledge	idea was used to	everywhere.	of solids, liquids and	The interaction of	the reactivity of	detect specific
	explain the work	Understanding the	gases and this has	particles often	chemicals is a	chemicals. The tests
	output of steam	difference in the	many applications in	involves transfers of	significant factor in	are based on
	engines and then	microstructure of	everyday life. It helps	energy due to the	how fast chemical	reactions that
	generalised to	conductors,	us to explain a wide	breaking and	reactions proceed,	produce a gas with
	understand other	semiconductors and	range of observations	formation of bonds.	there are many	distinctive properties,
	heat engines. It also	insulators makes it	and engineers use	Reactions in which	variables that can be	or a colour change or
	became a key tool for	possible to design	these principles when	energy is released to	manipulated in order	an insoluble solid that
	understanding	components and	designing vessels to	the surroundings are	to speed them up or	appears as a
	chemical reactions	build electric circuits.	withstand high	exothermic reactions,	slow them down.	precipitate.
	and biological	Many circuits are	pressures and	while those that take	Chemical reactions	Instrumental
	systems. Limits to the	powered with mains	temperatures, such	in thermal energy are	may also be	methods provide fast,
	use of fossil fuels and	electricity, but	as submarines and	endothermic. These	reversible and	sensitive and
	global warming are	portable electrical	spacecraft. Pathogens	interactions between	therefore the effect	accurate means of
	critical problems for	devices must use	are microorganisms	particles can produce	of different variables	analysing chemicals,
	this century.	batteries of some	such as viruses and	heating or cooling	needs to be	and are particularly
	Physicists and	kind. Electrical power	bacteria that cause	effects that are used	established in order	useful when the
	engineers are	fills the modern world	infectious diseases in	in a range of everyday	to identify how to	amount of chemical
	working hard to	with artificial light	animals and plants.	applications. Some	maximise the yield of	being analysed is
	identify ways to	and sound,	They depend on their	interactions between	desired product.	small. Forensic
	reduce our energy	information and	host to provide the	ions in an electrolyte	Understanding	scientists and drug
	usage. Chemists use	entertainment,	conditions and	result in the	energy changes that	control scientists rely
	theories of structure	remote sensing and	nutrients that they	production of	accompany chemical	on such instrumental

and bond	•	ontrol. The	need to grow and	electricity. Cells and	reactions is important	methods in their
explain the		lamentals of	reproduce. They	batteries use these	for this process. In	work. Industries use
and chei		-	frequently produce	chemical reactions to	industry, chemists	the Earth's natural
properti		-	toxins that damage	provide electricity.	and chemical	resources to
materials. A	,		tissues and make us	Electricity can also be	engineers determine	manufacture useful
structures sh	ows that centu	ury. However,	feel ill. This section	used to decompose	the effect of different	products. In order to
atoms ca	n be powe	r stations, like	will explore how we	ionic substances and	variables on reaction	operate sustainably,
arranged in	a variety 🔰 all ma	chines, have a c	an avoid diseases by	is a useful means of	rate and yield of	chemists seek to
of ways, so	ome of limited	l lifetime. If we re	educing contact with	producing elements	product. Whilst there	minimise the use of
which are m	olecular all	continue to t	hem, as well as how	that are too	may be compromises	limited resources, use
while others	are giant dei	mand more	the body uses	expensive to extract	to be made, they	of energy, waste and
structures.	heories electri	city this means	barriers against	any other way In this	carry out	environmental impact
of bonding	explain buildi	ng new power	pathogens. Once	section we will	optimisation	in the manufacture of
how atoms	are held stati	ions in every	inside the body our	explore how plants	processes to ensure	these products.
together in	these gene	eration – but	immune system is	harness the Sun's	that enough product	Chemists also aim to
structures. S	cientists what	mix of power	triggered which is	energy in	is produced within a	develop ways of
use this know	vledge of station	ns can promise u	sually strong enough	photosynthesis in	sufficient time, and in	disposing of products
structure	and a susta	ainable future?	to destroy the	order to make food.	an energy-efficient	at the end of their
bonding to e	engineer In this	section we will	pathogen and	This process liberates	way. Engineers	useful life in ways
new materi	als with lear	n about the	prevent disease.	oxygen which has	analyse forces when	that ensure that
desirable pr	operties. hum	nan digestive	When at risk from	built up over millions	designing a great	materials and stored
The prope	ties of sys	stem which u	nusual or dangerous	of years in the Earth's	variety of machines	energy are utilised.
these mater	ials may provi	ides the body	diseases our body's	atmosphere. Both	and instruments,	Pollution, disposal of
offer n	ew with	nutrients and n	atural system can be	animals and plants	from road bridges	waste products and
applicatio	ns in a the	respiratory e	enhanced by the use	use this oxygen to	and fairground rides	changing land use has
range of di	fferent system	n that provides of	of vaccination. Since	oxidise food in a	to atomic force	a significant effect on
technolo	gies. it wit		he 1940s a range of	process called aerobic	microscopes.	the environment, and
	rem	oves carbon a	ntibiotics have been	respiration which	Anything mechanical	environmental
	dioxid	e. In each case	developed which	transfers the energy	can be analysed in	chemists study how
	th	ey provide	have proved	that the organism	this way. Recent	human activity has
	disso	lved materials	successful against a	needs to perform its	developments in	affected the Earth's
	that	t need to be	number of lethal	functions. Conversely,	artificial limbs use the	natural cycles, and
			diseases caused by	anaerobic respiration	analysis of forces to	how damaging effects
	arour	nd the body in	bacteria.	does not require	make movement	can be minimised.
	the	blood by the	Unfortunately many	oxygen to transfer	possible.	
	circul	atory system.	groups of bacteria	energy. During		
	Dam	age to any of	have now become	vigorous exercise the		
	theses	systems can be	resistant to these	human body is unable		

			1
debilitating if not	antibiotics. The race	to supply the cells	
fatal. Although there	is now on to develop	with sufficient oxygen	
has been huge	a new set of	and it switches to	
progress in surgical	antibiotics.	anaerobic respiration.	
techniques, especially	Understanding of	This process will	
with regard to	chemical changes	supply energy but	
coronary heart	began when people	also causes the build-	
disease, many	began experimenting	up of lactic acid in	
interventions would	with chemical	muscles which cause	
not be necessary if	reactions in a	fatigue. Ionising	
individuals reduced	systematic way and	radiation is hazardous	
their risks through	organising their	but can be very	
improved diet and	results logically.	useful. Although	
lifestyle. We will also	Knowing about these	radioactivity was	
learn how the plant's	different chemical	discovered over a	
transport system is	changes meant that	century ago, it took	
dependent on	scientists could begin	many nuclear	
environmental	to predict exactly	physicists several	
conditions to ensure	what new substances	decades to	
that leaf cells are	would be formed and	understand the	
provided with the	use this knowledge to	structure of atoms,	
water and carbon	develop a wide range	nuclear forces and	
dioxide that they	of different materials	stability. Early	
need for	and processes. It also	researchers suffered	
photosynthesis.	helped biochemists to	from their exposure	
Chemists use	understand the	to ionising radiation.	
quantitative analysis	complex reactions	Rules for radiological	
to determine the	that take place in	protection were first	
formulae of	living organisms. The	introduced in the	
compounds and the	extraction of	1930s and	
equations for	important resources	subsequently	
reactions. Given this	from the earth makes	improved. Today	
information, analysts	use of the way that	radioactive materials	
can then use	some elements and	are widely used in	
quantitative methods	compounds react	medicine, industry,	
to determine the	with each other and	agriculture and	
purity of chemical	how easily they can	electrical power	
samples and to	be 'pulled apart'.	generation.	

		monitor the yield from chemical reactions. Chemical reactions can be classified in various ways. Identifying different types of chemical reaction allows chemists to make sense of how different chemicals react together, to establish patterns and to make predictions about the behaviour of other chemicals. Chemical equations provide a means of representing chemical reactions and are a key way for				
		chemists to communicate				
		chemical ideas.			-	
Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Teacher Notes						