

Created: February 2023

Adapted from CO-OP North Manchester's Curriculum

Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Topic(s)	Homeostatis	Inheritance	Waves	Ecology	GCSE Exam Practice	GCSE Exam Season
	Rates	Organic Chemistry	Chemistry of the			
	Forces	Chemical Analysis	Atmosphere			
Understanding:	Cells in the body can	In this section we will	The Earth's	The Sun is a source of		
Concepts /	only survive within	discover how the	atmosphere is	energy that passes		
Disciplinary	narrow physical and	number of	dynamic and forever	through ecosystems.		
Knowledge	chemical limits. They	chromosomes are	changing. The causes	Materials including		
	require a constant	halved during meiosis	of these changes are	carbon and water are		
	temperature and pH	and then combined	sometimes man-	continually recycled		
	as well as a constant	with new genes from	made and sometimes	by the living world,		
	supply of dissolved	the sexual partner to	part of many natural	being released		
	food and water. In	produce unique	cycles. Scientists use	through respiration of		
	order to do this the	offspring. Gene	very complex	animals, plants and		
	body requires control	mutations occur	software to predict	decomposing		
	systems that	continuously and on	weather and climate	microorganisms and		
	constantly monitor	rare occasions can	change as there are	taken up by plants in		
	and adjust the	affect the functioning	many variables that	photosynthesis. All		
	composition of the	of the animal or	can influence this.	species live in		
	blood and tissues.	plant. These	The problems caused	ecosystems		
	These control	mutations may be	by increased levels of	composed of complex		
	systems include	damaging and lead to	air pollutants require	communities of		
	receptors which	a number of genetic	scientists and	animals and plants		
	sense changes and	disorders or death.	engineers to develop	dependent on each		
	effectors that bring	Very rarely a new	solutions that help to	other and that are		
	about changes. In this	mutation can be	reduce the impact of	adapted to particular		
	section we will	beneficial and	human activity. Wave	conditions, both		
	explore the structure	consequently, lead to	behaviour is common	abiotic and biotic.		
	and function of the	increased fitness in	in both natural and	These ecosystems		
	nervous system and	the individual.	man-made systems.	provide essential		
	how it can bring	Variation generated	Waves carry energy	services that support		

	out fast responses.	by mutations and	from one place to	human life and	
	e will also explore	sexual reproduction is	another and can also	continued	
	hormonal system	the basis for natural	carry information.	development. In	
	iich usually brings	selection; this is how	Designing	order to continue to	
	out much slower	species evolve. An	comfortable and safe	benefit from these	
	anges. Hormonal	understanding of	structures such as	services humans need	
	coordination is	these processes has	bridges, houses and	to engage with the	
par	ticularly important	allowed scientists to	music performance	environment in a	
in r	eproduction since	intervene through	halls requires an	sustainable way. In	
	it controls the	selective breeding to	understanding of	this section we will	
me	enstrual cycle. An	produce livestock	mechanical waves.	explore how humans	
und	derstanding of the	with favoured	Modern technologies	are threatening	
rol	e of hormones in	characteristics. Once	such as imaging and	biodiversity as well as	
	eproduction has	new varieties of	communication	the natural systems	
alle	owed scientists to	plants or animals	systems show how	that support it. We	
d	levelop not only	have been produced	we can make the	will also consider	
со	ntraceptive drugs	it is possible to clone	most of	some actions we	
but	t also drugs which	individuals to	electromagnetic	need to take to	
car	n increase fertility.	produce larger	waves.	ensure our future	
Ch	nemical reactions	numbers of identical		health, prosperity and	
Са	in occur at vastly	individuals all carrying		well-being.	
diff	erent rates. Whilst	the favourable			
t	he reactivity of	characteristic. The			
	chemicals is a	chemistry of carbon			
sig	nificant factor in	compounds is so			
h	ow fast chemical	important that it			
re	actions proceed,	forms a separate			
	there are many	branch of chemistry.			
var	iables that can be	A great variety of			
ma	nipulated in order	carbon compounds is			
to	speed them up or	possible because			
S	low them down.	carbon atoms can			
Cł	nemical reactions	form chains and rings			
	may also be	linked by C-C bonds.			
	reversible and	This branch of			
the	erefore the effect	chemistry gets its			
of	different variables	name from the fact			
	needs to be	that the main sources			

		<i>.</i> .		
	ablished in order	of organic		
	identify how to	compounds are living,		
	imise the yield of	or once-living		
	esired product.	materials from plants		
	Inderstanding	and animals. These		
	rgy changes that	sources include fossil		
	ompany chemical	fuels which are a		
	tions is important	major source of		
	this process. In	feedstock for the		
	lustry, chemists	petrochemical		
	and chemical	industry. Chemists		
	neers determine	are able to take		
	effect of different	organic molecules		
	ables on reaction	and modify them in		
	te and yield of	many ways to make		
	luct. Whilst there	new and useful		
	be compromises	materials such as		
to	be made, they	polymers,		
	carry out	pharmaceuticals,		
	optimisation	perfumes and		
prod	cesses to ensure	flavourings, dyes and		
that	enough product	detergents.		
is pr	roduced within a			
suffic	cient time, and in			
and	energy-efficient			
	way.			
Teacher Notes				